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Abstract
Due to a large amount of noise in medical images, the task of detecting and classifying
the lesions of mammograms remains a huge challenge. Based on the existing deep learn-
ing methods, focusing on the diversity of breast cancer lesion types, this paper proposes
a computer-aided diagnosis system based on YOLOv3 (You Only Look Once version 3)
convolutional neural network for mammograms. In this system, we integrate detection and
multi-classification problems of breast lesions into a regression problem, thereby simultane-
ously accomplish the two tasks in one framework. The proposed computer-aided diagnosis
system is mainly divided into three components: preprocessing part of the original mam-
mograms, deep convolutional neural network based on YOLOv3, processing and evaluation
of the network output. We use the dataset from CBIS-DDSM to train three models: gen-
eral model, mass model and microcalcification model. These trained models can detect
the position of the input mammograms in different situations, and then classify them into
mass, microcalcification, benign, malignant, and other categories. After evaluating the per-
formance by using test set images, the accuracy rates of the general model, mass model,
and microcalcification model trained by our system reach 93.667 %, 97.767 %, 96.870 %
in the detection task, and 93.927 %, 98.121 %, 97.045 % in the classification task. The
computer-aided diagnosis system performs well in lesion detection and classification tasks
with high-noise mammograms, reflecting well robustness.

Keywords Breast cancer · Deep learning · Convolutional neural network ·
Object detection and classification · YOLOv3

1 Introduction

The breast cancer is the most common cancer among women in many countries or regions
[7]. Also, breast cancer is the leading cause of death among women in 103 countries. The
number of new breast cancer patients in US women will account for 30 % of all women’s
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new malignant tumor patients in 2020 [29]. To diagnose breast cancer, many screening
methods have been presented. Mammography, breast ultrasound, and breast magnetic res-
onance imaging (MRI) examinations are currently the main screening methods for breast
cancer [17]. In particular, mammography can detect abnormal areas that are not clinically
accessible in the early stage of breast cancer. Therefore, mammography plays an indispens-
able role in improving the diagnosis rate of breast cancer. Usually, the radiologists browse
the mammograms in a subjective visual way to find out the position of the lesion and clas-
sify it. However, errors in human eye and other factors have caused misdiagnosis and missed
diagnosis, which brings challenges to radiologists and pressures to patients [11]. Therefore,
computer-aided diagnosis technology is indispensable, and it can give the second opinion
to doctors for reference.

In recent years, with the breakthrough in computer hardware performance and the rapid
development of deep learning algorithms, the application of deep learning for mammograms
classifying has become more and more widely used. However, due to the complexity of
human tissues and the insufficient availability of the information which is collected by med-
ical imaging equipment, the breast tissue image information often contains a lot of noise,
which results in a relatively low signal-to-noise ratio (SNR). Using noisy mammograms can
cause wrong learning direction in deep learning models’ training stage and misjudgment in
the testing stage. Therefore, reducing the effect of noise in mammograms will bring accu-
rate learning direction and proper judgment, thereby improving the robustness of the model.
Inspired by this insight, our research aims to further reduce the impact of mammography
image noise, which can promote the performance of diagnostic task.

Based on state-of-the-art methods, this article focuses on the issues including multi-scale
feature maps, lesion detection, and classification. We further propose a computer-aided
diagnosis system for mammograms based on YOLOv3 [24]. Figure 1 shows the work
flow chart of our computer-aided diagnosis system. It is mainly divided into three stages:
preprocessing part, YOLOv3-based convolutional neural network part, and evaluation part.

The following narrative structure of this article is as follows: Section 2 mainly introduces
the existing related research work; Section 3 will describe in detail each structure of the
entire computer-aided diagnosis system, including dataset, image preprocessing method,
neural networks’ architecture and processing method for network output; in Section 4, we
will give our evaluation method, and quantitatively evaluate the performance of our system
through various metrics and compare with the previous methods; finally, in Section 5, we
will summarize this study and propose measures that can be further improved afterward.

2 Related work

With the achievement of convolutional neural network (CNN) technology, in the field of
mammogram recognition, CNN-based deep learning models have attracted the attention
of many researchers, and various efficient algorithms have been continuously proposed.
For the classification of mass lesions, Arevalo et al. [4], Kooi et al. [16], Sun et al. [31],
Sun et al. [30] and Suzuki et al. [32] used artificially labeled suspicious lesion areas and
used CNNs with different structures for feature extraction and recognition. In particular,
Suzuki et al. presented the deep convolutional neural network (DCNN) with the transfer
learning strategy for mass detection in mammographic images, and achieved a recall rate of
89.90 % on the DDSM [12] dataset [32]. Differently, Arfan et al. adopted CNN to extract the
features of the entire image, and then used support vector machine (SVM) for classification,
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Fig. 1 Flow chart of our computer-aided diagnosis system

achieving 93 % AUC on MIAS [12] and DDSM dataset [5]. Mordang et al. [20] and Bria
et al. [8] both paid attention to the classification of microcalcification lesions. For that,
they used different preprocessing methods and CNN structures leading to different results.
Mordang et al. applied a hard negative mining strategy, which helps overcome the large class
imbalance between pixels belonging to microcalcifications and other breast tissue [20]. Bria
et al. proposed a preprocessing algorithm for defogging images, achieving a recall rate of
76.26 % [8]. There are also some researchers who ignored the type of lesion and focused
on whether the lesion is benign or malignant. For example, Omonigho et al. [22] utilized a
DCNN based on AlexNet [15] to extract and classify the mammograms of the MIAS dataset
into two classes of benign (normal) and malignant (abnormal) tumors. With augmentation
techniques for improving classification accuracy, the system finally obtained an accuracy
rate of 95.70 %.

The above methods either directly input the preprocessed whole image, which will be
doped with a lot of noise and affect the performance of the classifiers, or simply use the
cropped lesion area, which is extremely dependent on manual annotation information. To
reduce the effects of manual annotation information, Ben-ari et al. paid attention to the
detection of the lesions. They provided a new R-CNN method by using a pretrained net-
work on a candidate region guided by clinical observations, to detect and classify lesions in
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the DDSM dataset [6]. Based on the characteristics of mammograms with multiple views,
Ma et al. used faster-RCNN [26] based method, termed Cross-View Relation Region-based
Convolutional Neural Networks (CVR-RCNN), to detect and classify the lesions from two
paired views, and achieved an F1 score of 73 % [19]. Sarath et al. proposed a two-stage
Multi-Instance Learning (MIL) framework with the first stage for extracting local candidate
patches in the mammograms and the second stage for classifying an image level benign vs.
malignant mass, and achieved an accuracy of 76 % in the detection task and an AUC of
0.91 in the classification task on the INbreast dataset [27]. Jung et al. adopted the FaceBook
AI team’s RetinaNet [18] as the deep learning network to train for mammogram lesions
detection and classification tasks, and achieved comparable or better performance [13] on
the INbreast dataset [21]. Al-Masni et al. [1] and Platania et al. [23] also paid attention to
the detection of mammogram lesions. They used YOLOv1 [25] algorithm to achieve the
two tasks of detecting and classifying breast mass lesions in the same framework. In partic-
ular, Al-Masni et al. achieved 96.33 % detection accuracy rate and 85.52 % classification
accuracy rate on the subset of CBIS-DDSM [1]. Lately, they utilized data augmentation to
further improve the detection accuracy rate of breast lesions to 99.7 % and the classification
accuracy rate to 97 % [2]. The framework of Platania et al. achieved a detection accuracy of
up to 90 % and a classification accuracy of 93.5 % (AUC of 92.315 %) [23]. However, the
methods still have the following shortcomings. First, the recognition accuracy of potential
small lesions is relatively low. Second, these methods only identify breast mass lesions, but
there are other types of mammogram lesions such as microcalcification. These problems
have thus determined the limitation of this kind of method.

In order to solve the limitations mentioned above, while paying attention to the detec-
tion and classification of mammograms, we further notice the problems of various types
of lesions and small-sized lesions and propose a YOLOv3-based computer-aided diagnosis
system for mammograms. Our detailed contributions are summarized as follows. Accord-
ing to the types of lesions in the mammograms (mass and microcalcification), we train three
models using the mammograms from CBIS-DDSM dataset [28]: the general model trained
using all images, the mass model trained by mass images only and the microcalcification
model trained using microcalcification images only. The computer-aided diagnosis system
we proposed can learn the entire image in one network architecture to achieve two tasks
including detecting the positions of the lesions and classifying the lesions simultaneously.
Compared with other state-of-the-art methods, we have enhanced the ability to detect small-
sized lesions and paid attention to the diversity of lesion types, so that our system has better
performance and can handle more tasks.

3 Computer-aided diagnosis system based on YOLOv3

3.1 Dataset

DDSM is a mammogram dataset maintained by the University of South Florida in 1997
[12]. It contains mammograms from 2620 patients. Each patient generally has four images
from two views including the mediolateral oblique (MLO) view and the craniocaudal (CC)
view of the left and right breasts. To use the DDSM dataset in a standardized manner, the
TCIA website [9] collated and obtained the CBIS-DDSM dataset [28]. This is an updated
standardized version of a subset of DDSM, including images of two lesion categories, mass,
and microcalcification. Each mammogram is marked with a label (benign and malignant)
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Fig. 2 Mammograms from the CBIS-DDSM dataset. a and b respectively show the images of mass lesion; c
and d show the image of microcalcification lesion. The green part is the lesion

and provides an accurate bounding box of the lesion area. Figure 2 shows the original mam-
mograms and lesion outline from CBIS-DDSM. We can find the mass lesions are small
and dense, while the microcalcification lesions are large and banded. These differentiated
features bring great challenges to our computer-aided diagnosis system.

As shown in the Table 1, after removing the duplicate images, we use all the mass
images and microcalcification images in the CBIS-DDSM dataset. As the deep learning
algorithms often have better performance on large amounts of data, we use data augmenta-
tion to increase the number of images. Based on the original images, we rotate each image
clockwise by 90◦, 180◦, and 270◦ to expand the dataset by 4 times and randomly mix these
images. As shown in Table 2, we use a total of 12,040 images to train and test our computer-
aided diagnosis system. Since the lesion appears as a complex curve on the image, in order
to conveniently express the position of the lesion, as shown in the Fig. 3, we use a rectan-
gle with the center point coordinates and the length and width information to replace the
complex curve.

3.2 Image preprocessingmethod

In the process of mammography scanning, the breast is often deformed due to compression,
which has a certain impact on the gray value of the generated image. In order to reduce the
impact of breast compression for correct diagnosis, we refer to the multi-threshold periph-
eral equalization technique from the article [3] and make some adjustments according to the
actual situation. Our algorithm mainly creates multiple images by using multiple thresholds
and then averages these images to produce a smooth transition between the central and the
edge areas of the mammogram, while enhancing the surrounding and lesion areas of the

Table 1 Original dataset after removing the duplicate images

original dataset benign malignant total

mass 839 731 1570

microcalcification 856 584 1440

total 1695 1315 3010
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Table 2 Expanded dataset

expanded dataset benign malignant total

mass 3356 2924 6280

microcalcification 3424 2336 5760

total 6780 5260 12040

mammogram. As shown in Fig. 4, our algorithm mainly includes the following consecutive
steps: First, we apply a gaussian low-pass filter (GLPF) to the original mammography image
Iorig as shown in Fig. 4a, thereby generating a blurred image Iblur as shown in Fig. 4b. Sec-
ond, we take the gray average value ave of all non-zero gray pixels on Iblur , and use five
thresholds Tk as the average of the non-zero gray pixels of the five threshold images to esti-
mate normalized thickness profile (NTP) of the mammogram. The calculation method of
each threshold Tk is as formula (1):

Tk = ave × Fk; k = 1, 2, ..., 5 (1)

Here, the value of Fk is [0.8, 0.9, 1.0, 1.1, 1.2], which means that it will be used to adjust
the proportional parameters around ave. By using this method, the surrounding area of the
mammogram can be enhanced, and at the same time, the effect of the breast boundary being
too obvious when using a single threshold is eliminated. Then we create five Îblur images
based on these five thresholds Tk , where each pixel (i, j) of the k-th image is represented
as Îblur (k, i, j), their calculation method is formula (2):

Îblur (k, i, j) =
{

Iblur (i,j)
Tk

; Iblur(i,j) ≤ Tk

1 ; otherwise
(2)

Fig. 3 Position label diagram. a is original image; b is the image with a precise label; c is the image with a
label frame
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Fig. 4 Image preprocessing. a is Iorig ; b is Iblur ; c is Intp ; d is Ipeq

Here, k = 1, 2, ..., 5; i = 1, 2, ...,M; j = 1, 2, ..., N ; M × N is the size of the mammo-
gram. According to these five images Îblur (k), use formula (3) to calculate the Intp image
as shown in Fig. 4c.

Intp = 1

5

5∑
k=1

Îblur (k) (3)

And then, based on the Intp image and using the formula (4), we calculate and obtain the
peripheral equalized image Ipeq as shown in Fig. 4d.

Ipeq = Iorig

Intp

(4)

Finally, since the input size of our YOLOv3-based convolutional neural network is
(416, 416, 3), we scale all the images to (416, 416, 3) to match the network input size.

3.3 Cluster anchor boxes

As shown in Fig. 5, in our computer-aided diagnosis system, each image is divided into
N × N non-overlapping grid cells. YOLOv3 is inspired by the multi-scale feature maps.
The convolutional network divides the entire image into 13 × 13, 26 × 26, 52 × 52 grid
cells on average. Each grid cell is preset with three bounding box vectors, and each bound-
ing box vector is responsible for predicting the potential lesion whose geometric center is
located in the grid. Geometric center, width and height of the potential lesion are described
by x, y,w, h, confidence of the potential lesion is represented by conf , and conditional
probability of each category is represented by class (classi represents the conditional

Fig. 5 Sketch map of predicted bounding box vectors
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probability of the i-th class if the object is known to be a lesion). Here, class is a mul-
tidimensional vector. Therefore, if the length of the class is len(class), the length of the
bounding box vector is len(p) = 4 + 1 + len(class), the output shape of the network is a
list of (m, 13, 13, 3, len(p)), (m, 26, 26, 3, len(p)), (m, 52, 52, 3, len(p)).

To improve accuracy, we make the large-scale grid cells responsible for predicting large
lesions, small-scale grid cells responsible for predicting small lesions. We set different
widths and heights for each bounding box of different scales. The preset box with different
widths and heights is called anchor box. To make the preset anchor boxes as close as pos-
sible to the widths and heights of the label border of more images, an algorithm similar to
the k-means clustering algorithm is used to calculate the 9 anchor boxes needed by the three
bounding boxes of three scales. Unlike the k-means clustering algorithm, the algorithm we
adopted defines distance as formula (5).

dist (a, b) = 1 − min(wa,wb) · min(ha · hb)

wa · ha + wb · hb − min(wa,wb) · min(ha · hb)
(5)

Here, a, b represent two anchor box vectors. We can easily find that the method defined
by formula (5) can express the degree of fitting between two anchor boxes, the higher the
degree of fitting of anchor boxes a and b, the smaller the dist (a, b). Except for the different
ways of defining distance, our algorithm and k-means clustering algorithm are generally
similar in other parts. After the algorithm is completed, we allocate the calculated anchor
boxes, so that the large-scale grid cell presets the large-scale anchor box, while the small-
scale grid cell presets the small-scale anchor box. Figure 6 shows the distribution of all
anchor boxes and the position of nine central anchor boxes calculated by the algorithm.

3.4 Structure and implementation of YOLOv3 based network

YOLOv3 network is a unified structure. In order to facilitate the discussion of the network
structure, we use only one image but not m images in each batch for illustration. There-
fore, the input shape of the network is (416, 416, 3), and the output shape of the network
is a list of (13, 13, 3, len(p)), (26, 26, 3, len(p)), (52, 52, 3, len(p)). Figure 7 shows our

Fig. 6 Clustering scatterplot of anchor boxes. The blue dots are the anchor boxes of input; the red dots are
the nine central anchor boxes of output
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Fig. 7 Convolutional neural network structure based on YOLOv3

network architecture based on YOLOv3. The network is mainly divided into two parts. The
first part is the feature extraction network, it is a Darknet-53 without the fully connected
layer. It is mainly composed of two structures: Conv2D Block, and Residual Block n×.
The second part is the feature utilization network that uses the multiple feature layers from
the feature extraction network. We extract a total of three feature maps, and their shapes
are (52, 52, 256), (26, 26, 512), (13, 13, 1024). The feature utilization network is mainly
composed of Conv2D Block, up-sampling layer, and convolution layer. Through the opera-
tion of upsampling, the large-scale feature map can also have convolution features from the
small-scale feature map.

Finally, the network output is consolidated into a predicted tensor with the shapes of
(13, 13, 3, len(p)), (26, 26, 3, len(p)), (52, 52, 3, len(p)). Each predicted bounding box
vector is p = (x, y, w, h, conf, class), while (x, y,w, h) describes the position of the
lesion, conf contains the confidences of two sources. One is network’s confidence in the
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presence of lesion in the predicted position, the other is network’s confidence about the
degree of fitting of its predicted position and label position. As formula (6) shows, we
multiply these two confidences to get the final confidence conf .

conf = P(Lesion) ∗ IOUtruth
pred (6)

The class in predicted bounding box vector p is a conditional probability vector for the
categories, as shown in formula (7). It is expressed as the conditional probability that the
lesion belongs to various categories Classi after determining that the object is a lesion.

classi = P(Classi |Lesion) (7)

The loss function of each batch will be calculated by the average loss function of all the
images in the batch, as shown in the formula (8).

Loss = 1

m

m∑
i=1

3∑
j=1

Lossij (8)

Here, m is the number of images in each batch, Lossij is the loss function value of the
j -th feature map of the i-th image of the batch, and Lossij is calculated by formula (9). It is
important to note that different feature maps j will correspond to different numbers of grid
cells N × N .

Lossij = λcoord

N×N∑
i=1

3∑
j=1

1obj
ij ∗ [BCE(xij , x̂ij ) + BCE(yij , ŷij )]

+λcoord

N×N∑
i=1

3∑
j=1

1obj
ij ∗ [MSE(wij , ŵij ) + MSE(hij , ĥij )]

+
N×N∑
i=1

3∑
j=1

1obj
ij ∗ BCE(conf ij ,

ˆconf ij )

+λnoobj

N×N∑
i=1

3∑
j=1

1noobj
ij ∗ BCE(conf ij ,

ˆconf ij )

+
N×N∑
i=1

3∑
j=1

nclass∑
k=1

1obj
ij ∗ BCE(classijk, ˆclassijk) (9)

Among them, function BCE is defined as the form shown in formula (10), which is
considered to be the binary cross-entropy loss function in the form of a single sample. And
function MSE is the square loss function in the form of a single sample, which is defined
as the formula (11).

BCE(x, x̂) = (−1) ∗ [x · log x̂ + (1 − x) log(1 − x̂)] (10)

MSE(x, x̂) = 1

2
(x − x̂)2 (11)

In formula (9), 1obj
ij means that the j -th predicted bounding box vector of the i-th grid is

a positive sample, and 1noobj
ij means the j -th predicted bounding box vector of the i-th grid

is a negative sample. The selection strategy of positive and negative samples is determined
by the following rules:
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• The predicted bounding box with the largest IOU with a certain label bounding box is
a positive sample.

• The predicted bounding box whose IOU with a certain label bounding box exceeds the
ignoring threshold (we set it as 0.5 in experiments) is a positive sample.

• The predicted bounding box that does not exceed the ignoring threshold and does not
have the largest IOU with a certain label bounding box is a negative sample.

In formula (9), λcoord is the coefficient used to balance the coordinate loss, which is
defined by formula (12) used to measure the size of the lesion, where wuncoded and huncoded

are the proportions of the length and width of the label bounding box on the entire image.
When the lesion is smaller, the value of λcoord is larger, thereby improving the detection
ability for small lesions. The coefficient λnoobj is used to balance the loss function of nega-
tive samples. Due to a large number of negative samples in the actual situation, in practical
application, we let λnoobj = 1.

λcoord = 2 − wuncoded
ij · huncoded

ij (12)

3.5 Network output processingmethod

Since there are still a lot of predicted bounding box vectors with low confidence or even 0
in the final output tensor of the network, we need to process the output tensor and get the
real bounding box and the score of each category.

First, we calculate the confidence scorei of each category in each predicted bounding
box vector according to formula (13).

scorei = conf ∗ classi

= P(Lesion) ∗ IOUtruth
pred ∗ P(Classi |Lesion)

= P(Classi) ∗ IOUtruth
pred (13)

Then we copy the position information in predicted bounding box vectors len(class)

times as box vectors, so that each box vector is assigned unique score and class. Then we
filter the boxes with low score. We set a score threshold, all boxes that do not reach the
score threshold and have no maximum score are filtered out.

In the actual situation, as the grid cells near the geometric center of the label bounding
box may generate many boxes with higher scores for the same lesion, there are often a large
number of boxes after threshold filtering. They always overlap each other and interweave
in the core area of the lesion. In order to eliminate these redundant boxes, we use the non-
maximum suppression algorithm to find the best box for the lesion. The specific process of
the non-maximum suppression algorithm is as follows:

1) Sort all boxes according to their scores.
2) Select the box with the highest score and add to the output list, then delete the box from

the box list.
3) Calculate all IOUs of the box with the highest score and other boxes, and delete the

boxes whose IOU is greater than the IOU threshold.
4) Repeat the above process until the box list is empty, and exit the algorithm.

Figure 8 shows the effect of the non-maximum suppression algorithm. We use this box
list after the final step of algorithm to draw the output mammogram.
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Fig. 8 The effect of non-maximum suppression. a is the image before using the non-maximum suppression
algorithm, b is the image after using the non-maximum suppression algorithm

4 Experiment and analysis

4.1 Experiment setup

4.1.1 Operating environment and training strategy

In our dataset, there are two types of the breast tumor lesions: mass and microcalcifica-
tion. At the same time, lesion is one of the two cases of being benign and malignant,
thus we merge these types into four categories: mass-benign (MB), mass-malignant (MM),
microcalcification-benign (CB), and microcalcification-malignant (CM). In some situa-
tions, if the lesion of the mammogram can be determined to be mass or microcalcification,
our computer-aided diagnosis system will show better performance. Therefore we train three
models under this system: general model, mass model and microcalcification model. Since
the number of the dataset we use is medium-sized, we shuffle the dataset and divide it into
10 subsets on average, maintaining the proportion of each category of the original dataset.
Then we take nine subsets of them as the training set and the remaining one subset as the
test set (also as the verification set).

Our training process is completed on the NVIDIA GeForce GTX 1080Ti graphics card on
the cloud server, which has a core frequency of 1480Mhz and 11GB of video memory. The
test process is completed on a local laptop, the graphics card used is NVIDIA GeForce GTX
960m, and it has a core frequency of 1176Mhz and 2GB of video memory. It is worth noting
that although we spend several days training the model on a high-performance graphics
card, the overall system flow from input to output is achieved at an average of 0.144s per
image on our low-performance mobile graphics card.

We mainly use the following training tricks in the training process.

• Transfer learning. Transfer learning has proven to be effective in the training of
convolutional neural networks for mammograms [32]. The first few layers in the con-
volutional neural network are often used to extract shallow features such as upper and



Multimedia Tools and Applications

Table 3 Number of mammograms used by general model

classes MB MM CB CM total

train set 3021 2632 3082 2103 10838

test set 335 292 342 233 1202

train set rate 90.018 % 90.014 % 90.012 % 90.026 % 90.017 %

lower boundaries, which are also applicable to mammograms. The original YOLOv3
weights are trained on the ImageNet [10] dataset which has a large number of images.
We only need to adjust them slightly based on our data, so we first load the original
weight of YOLOv3.

• Adam optimizer. In the training process, we use Adam optimizer [14] instead of the
stochastic gradient descent algorithm. At the same time, we use an adaptive learning
rate adjustment strategy. After monitoring that the loss function value of the validation
set has not decreased after multiple epochs of training, the learning rate will drop to
one-tenth of the original to obtain more delicate optimization.

4.1.2 General, mass andmicrocalcification model

According to the type of breast lesions, we train three models in the computer-aided
diagnosis system based on YOLOv3: general model, mass model and microcalcification
model. For the training and evaluation of the general model, we use all mammograms
of the expanded dataset. As shown in Table 3, we use a total of 10838 mammograms
for general model training in the system. In the test phase, we use a total of 1202
mammograms for general model evaluation. There are four categories involved in the gen-
eral model: mass-benign (MB), mass-malignant (MM), microcalcification-benign (CB),
microcalcification-malignant (CM). Therefore, the number of classes len(class) = 4, the
length of each prediction box vector len(p) = 9, the network output size of general model
is (m, 13, 13, 3, 9), (m, 26, 26, 3, 9), (m, 52, 52, 3, 9).

Although the number of these types of images is not strictly limited to 1 : 1, their num-
bers are not much different. To enable the model to learn more image features as much
as possible, as shown in Tables 4 and 5, we use all the mass images and microcalcifica-
tion images in the expanded dataset to train the mass model and micro-microcalcification
model respectively. Only two types of benign and malignant are involved in the mass model
and microcalcification model. Therefore, the number of classes len(class) = 2, the length
of each prediction box vector len(p) = 7, and the network output size of each model is
(m, 13, 13, 3, 7), (m, 26, 26, 3, 7), (m, 52, 52, 3, 7).

Table 4 Number of mammograms used by mass model

classes MB MM total

train set 3021 2632 5653

test set 335 292 627

train set rate 90.018 % 90.014 % 90.016 %
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Table 5 Number of mammograms used by microcalcification model

classes CB CM total

train set 3082 2103 5185

test set 342 233 575

train set rate 90.012 % 90.026 % 90.017 %

4.2 Evaluation system

4.2.1 Evaluation logic

We evaluate the performance of our computer-aided diagnostic system based on objective
quantitative methods. Figure 9 shows our evaluation logic during the testing phase. We
input the test images into the trained model to obtain output tensors. The output tensor is
first decoded and filtered by the score threshold, and then processed by the non-maximum
suppression algorithm to obtain the final box list. Our evaluation is based on the output box
list. It is important to note that if all the scores of all boxes do not exceed the score threshold,
the box with the highest score will be retained.

Figure 10a is the image output through the final evaluation system when the score thresh-
old is 0. At this time, the predicted boxes on the screen appear messy because of the large
number of boxes. Figure 10b is the image with the score threshold of 0.01. Although the
predicted boxes have been filtered to only two, the box with a low score is still wrong and
unavailable. Figure 10c is the image with the score threshold of 0.1, and Fig. 10d is the
image with the label bounding box. Obviously, the two bounding boxes are very close. After
comparing the predicted box and the label box, we set the score threshold to 0.1 and the IOU
threshold used in the non-maximum suppression algorithm to 0.4. Therefore, the criteria for
setting thresholds is based on experimental results.

Fig. 9 Evaluation logic of the evaluation system
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Fig. 10 The effect of different score thresholds on the system results

4.2.2 Evaluation methods andmetrics of lesion detection

In the evaluation of system’s lesion detection performance, we still use the IOU of predicted
box and label box as reference. Similarly, if the IOU of the predicted box and the label box
reaches 0.4, we believe that the predicted box correctly describes the label box. Therefore,
the specific algorithm flow is as follows: traverse the label boxes of each lesion in each
image, and traverse all the predicted boxes for each label box. If a predicted box is found
and reaches the IOU threshold with this label box, we think that the label box is correctly
described. If all label boxes of lesions in the entire image are correctly described, the model
is judged as predicting the position of the lesions in this image correctly. If a certain label
box is not described correctly, it is considered that the model is wrong in predicting the
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position of this image lesion. Therefore, we use the accuracy rate as the metric to measure
the performance of the model trained by our system in the task of detecting the lesions.

4.2.3 Evaluation methods andmetrics of lesion classification

For evaluating the system’s lesion classification performance, we directly use the category
of the predicted box with the highest score as the reference. Because each image in the
CBIS-DDSM dataset only has one type of lesion, the predicted box with the highest score
will have the highest confidence. For all models, we use accuracy to assess the overall
classification performance.

Our dataset can be divided into benign or malignant, mass or microcalcification cat-
egories which are semantically opposite. In order to show the model performance from
different aspects, we also calculate the classification results of each opposing category to
describe the results of the model. As our main task is to find malignant lesions as much as
possible, we define malignant lesions as positive and benign lesions as negative. Besides,
microcalcification lesions are more difficult to be detected than mass lesions, inspired by
this, we define microcalcification lesions as positive and mass lesions as negative. The vari-
ous evaluation metrics in binary classification, including accuracy, precision, recall and
f 1 score, will be applied to the reference standard of the classification performance of our
model. The definition of each metric is shown in formula (14):⎧⎪⎪⎪⎨

⎪⎪⎪⎩
accuracy = T P+T N

T P+T N+FP+FN

precision = T P
T P+FP

recall = T P
T P+FN

f 1 = 2∗precision∗recall
precision+recall

(14)

In formula (14), T P and T N respectively indicate the number of positive and negative
categories that are correctly predicted in the test set, while FP and FN indicate the number
of positive and negative classes that are incorrectly predicted in the test set.

The accuracy rate measures the overall prediction. The precision rate represents the
proportion of the samples of the predicted positive class that are actually positive; the recall

rate represents the proportion of the samples of the actual positive class that are predicted
to be positive; the f 1 score integrates the two metrics of the precision rate and the recall
rate. Besides, we also adopt the area under the ROC curve AUC as one of the evaluation
metrics, in which the ROC curve is a curve with the axis of false positive rate and the axis
of true positive rate.

In particular, the inference time of the test phase is also an important metric. The moment
we get the image from the hard disk is set as the start time and the moment after the model
infers the position and type of the lesion is set as the end time. The time between the two
moments is the inference time of our model.

4.3 The detection performance of our models

Figure 11 shows the detection ability of our model trained by the proposed computer-aided
diagnosis system. It can be seen that the prediction of the lesion position and category by
our system is relatively accurate.

Table 6 records the performance on each category in the lesion detection task of the
general model. In the table, the image with the IOU of the predicted box and the label
box lower than 0.4 is considered as incorrectly describing the position of the lesions. The
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Fig. 11 Model test results. a and b show the prediction and label boxes of a microcalcification image
respectively; c and d show the prediction and label boxes of a mass image respectively

Table 6 Table of the number of detections of each category of the general model

classes MB MM CB CM total

true 318 280 316 212 1126

false 17 12 26 21 76

total 335 292 342 233 1202

accuracy 94.925 % 95.890 % 92.398 % 90.987 % 93.677 %
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Table 7 Table of the number of detections of each opposite category of the general model

classes benign malignant mass calc

true 634 492 598 528

false 43 33 29 47

total 677 525 627 575

accuracy 93.648 % 93.714 % 95.375 % 91.826 %

result shows that the general model trained by our computer-aided diagnosis system has
high robustness, 93.677 % of the mammogram lesions can be correctly described under the
condition when the IOU threshold is 0.4. In addition, 95.890 % of the mammogram lesions
whose category is the mass-malignant can be correctly described.

Table 7 lists the general model performance in detection task for two major categories
with opposite semantic meaning (benign and malignant, mass and microcalcification).
Among them, the benign category includes mass-benign and microcalcification-benign;
the malignant category includes mass-malignant and microcalcification-malignant; the
mass category includes mass-benign and mass-malignant; the microcalcification category
includes microcalcification-benign and microcalcification-malignant. In the detection task,
the general model trained by our system has little difference in the detection performance
of benign and malignant lesions, but the detection performance of the mass lesions is sig-
nificantly better than that of microcalcification lesions. This may be caused by the fact
that the mass lesions are usually small and dense while the microcalcification lesions are
comparatively large and band-shaped.

Due to the large difference between mass lesions and microcalcification lesions, if we can
determine the type of lesions, the detection ability of the mass model and microcalcification
model will be obviously improved than the general model. As shown in Tables 8 and 9, the
lesion detection performance of the mass model can reach an accuracy rate of 97.767 %,
compared with the detection accuracy rate of 95.375 % of general model, which is improved
by 2.410 %. The detection ability of the microcalcification model has been significantly
improved after the detection task is limited to the scope of microcalcification lesions. It can
achieve an accuracy rate of 96.870 % in the position detection task, which is an increase of
5.044 % compared with 91.826 % of the detection accuracy rate of the microcalcification
category of the general model. Therefore, if it can be determined that the type of lesion is
microcalcification or mass, using the corresponding model for position detection will have
better performance.

Table 8 Table of the number of detections of each category of the mass model

classes MB MM total

true 326 287 613

false 9 5 14

total 335 292 627

accuracy 93.313 % 98.288 % 97.767 %
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Table 9 Table of the number of detections of each category of the microcalcification model

classes CB CM total

true 331 226 557

false 11 7 18

total 342 233 575

rate 96.784 % 96.996 % 96.870 %

4.4 The classification performance of our models

In the general model, we use all 1202 images in the test set to evaluate the performance
of the general model. Table 10 shows the classification result of each category in the test
set calculated by the general model. We can calculate the accuracy rate of general model
classification, which reaches 93.927 % from the data in the table. Table 11 records the
metrics of the general model in each classification task. We can observe these following
results:

• The general model achieves the best performance on the task of classifying lesion types
as mass or microcalcification.

• The accuracy rate of the general model in detecting the position of mass lesion is
significantly higher than that of detecting the position of microcalcification lesion,
while the accuracy in classifying mass lesion is slightly lower than that of classifying
microcalcification lesion.

• In each classification task, the metrics of the general model are between 94 % and 98 %,
which shows the relatively robust performance of our general model.

We test the mass model and the microcalcification model respectively with a total of
627 mass images and 575 microcalcification images in the test set. Table 12 shows the test
results of classification performance of mass model and microcalcification model. In the
Table 12, the mass model is on the upper left and the microcalcification model is on the
lower right. Since the two models are independent and do not interfere with each other, the
lower left and the upper right show 0. From Table 12, we can intuitively see that the number
of correct predictions of the mass model and the microcalcification model is significantly
higher than that of the general model. Table 13 lists the comparison between mass model and
microcalcification model and the general model in terms of the classification of mass and
microcalcification lesions. From the listed data, we can summarize these following results:

Table 10 Classification result of general model

label

pred

MB MM CB CM total

MB 309 15 8 3 335

MM 9 274 3 6 292

CB 2 4 328 8 342

CM 1 6 8 218 233

total 321 299 347 235 1202
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Table 11 Classification metrics of general model

metrics

tasks

M or C Mass Calc B or M

accuracy 97.255 % 95.215 % 96.348 % 95.757 %

precision 96.564 % 93.960 % 94.915 % 94.382 %

recall 97.739 % 95.890 % 96.137 % 96.000 %

f1 score 97.148 % 94.915 % 95.522 % 95.184 %

AUC 97.275 % 95.259 % 96.314 % 95.784 %

• The result metrics of the mass model and the microcalcification model are higher
than those of the general model, while the metrics of the mass model increase most
significantly.

• In general model, the classification result of mass lesions is weaker than that of
microcalcification lesions, but the classification performance of the mass model is
significantly better than that of microcalcification model.

• Performances of the mass model and the microcalcification model vary between 96 %
and 99 %, showing better performance than the general model.

4.5 The test speed of our models

In particular, test speed is also an important metric of model performance. Our experiment
is completed on a laptop with NVIDIA GeForce GTX 960m. The average test times for the
three models are shown in Table 14, which conveys two very important messages. The first
is that our model can also run on servers with poor performance, and the running time is
extremely short, which makes it possible to use our model in hospitals. The second is that
the overall operating speed does not increase significantly with the increasing of prediction
categories, which shows that our computer-aided diagnostic system can maintain a high
identification speed for a variety of complex breast lesion categories.

4.6 Comparison of our systemwith other methods

In this study, we have developed a computer-aided diagnosis system for mammograms. We
use the system to train three models to detect mammogram lesions under certain condi-
tions and classify them as mass, microcalcification, benign, malignant, and other categories.
Figure 11 shows the ability of our system to correctly detect and classify various types of

Table 12 Classification results of mass and microcalcification models

label

pred

MB MM CB CM total

MB 327 8 0 0 335

MM 4 288 0 0 292

CB 0 0 335 7 342

CM 0 0 9 224 233

total 331 296 344 231 1202
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Table 13 Classification metrics of mass and microcalcification models

metrics

models

mass general(mass) calc general(calc)

accuracy 98.086 % 95.215 % 97.217 % 96.348 %

precision 97.297 % 93.960 % 96.970 % 94.915 %

recall 98.630 % 95.890 % 96.137 % 96.137 %

f1 score 97.959 % 94.915 % 96.552 % 95.522 %

AUC 98.121 % 95.259 % 97.045 % 96.314 %

potential breast lesions. Tables 6 to 14 show the overall performance of our system from
various quantitative metrics. These results prove that our YOLOv3-based computer-aided
diagnosis system has good performance for mammogram lesions.

To show the robustness of our computer-aided diagnosis system based on YOLOv3, we
also compare this system with some of the state-of-the-art methods. Among them, Arevalo
et al. [4] performed the CNN parameter exploration by training 25 models with random
hyperparameter initializations and choosing the best according to validation performance.
Sun et al. [31] used the batch size of 100, subsampling rate of 2, and the learning rate was
set to 0.1 for 100 epochs. Sun et al. [30] randomly initialized the weights of network, and
the learning rate was set as 0.0001 with 128 batch size. Suzuki et al. [32] utilized the DCNN
containing 8 layers, with the first 5 convolution layers and the remaining 3 fully-connected
layers. Arfan et al. [5] set batch size for stochastic gradient descent to 64 with momentum
0.8 and decay parameter of 1e-5. Mordang et al. [20] initially set the learning rate to 0.01
and linearly decreased to 0.0001 over the maximum number of epochs. Bria et al. [8] set
momentum and weight decay to 0.9 and 0.0005 respectively, and the dropout probability
to 0.5. Ben-ari et al. [6] used 0.4 as the threshold parameter on the overlap ratio. Sarath et
al. [27] trained the localization network for 300 epochs with a batch size of 8 and 36 batch
updates per epoch, trained the MIL network for 100 epochs with a learning rate of 0.001 and
weight decay of 0.0005. Platania et al. [23] initialized the weights of CNN from pretraining,
and stochastic gradient descent is utilized for the minimization.

Table 15 is a comparison of performance in mass classification task. Other state-of-
the-art methods tend to crop images to improve accuracy. In particular, Arfan et al. [5]
achieved 93 % AUC, but this result is still lower than the 98.121 % AUC of our mass model.
Fewer methods paid attention to the classification of microcalcification lesions. As shown
in Table 16, the performances of other researchers’ methods in the task of classification
of microcalcification lesions are relatively poor. Although the image preprocessing process
by Bria et al. [8] adopted the defogging algorithm to effectively improve the recall rate to
76.26 %, it is still lower than the recall rate of 96.137 % that can be achieved by our micro-
calcification model. Because our model adds detection steps for the position of lesions, it
further improves the accuracy of classification. Table 17 shows the comparison of the per-
formances of our system’s mass model and other researchers’ methods in the detection and
classification of mass lesions. On position detection task, Al-masni et al. [1] achieved the

Table 14 The results of model test speed

model general model mass model calc model

time 0.144s 0.142s 0.143s
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Table 15 Comparison of our system with other methods in mass lesion classification

paper dataset method metric result

L. Sun et al. [30] DDSM MVMDCNN Accuracy 82.02 %

W. Sun et al. [31] FFDM SSL+ROI+CNN AUC 82.43 %

Suzuki et al. [32] DDSM TL+CNN Recall 89.90 %

Arevalo et al. [4] BCDR ROI+CNN AUC 82.20 %

Arfan et al. [5] MIAS, DDSM CNN+SVM AUC 93 %

Accuracy 98.086 %

This paper DDSM YOLOv3(mass) AUC 98.121 %

Recall 98.630 %

Table 16 Comparison of our system with other methods in microcalcification lesion classification

paper dataset method metric result

Mordang et al. [20] Multiple dataset ROI+CNN Recall 70 %

Bria et al. [8] GE Sengraphe Defog+CNN Recall 76.26 %

This paper DDSM YOLOv3(calc) Recall 96.137 %

Table 17 Comparison of our system with other methods in mass lesion detection and classification

paper dataset method metric result

Sarath et al. [27] INbreast Two-stage MIL IOU=0.5 76 %

Platania et al. [23] DDSM YOLOv1 IOU=0.25 90 %

Bria et al. [8] DDSM YOLOv1 IOU=0.5 99.7 %

Ben-ari et al. [6] DDSM R-CNN IOU=0.4 88 %(Recall)

This paper DDSM YOLOv3(mass) IOU=0.4 97.767 %

Sarath et al. [27] INbreast Two-stage MIL AUC 76 %

Platania et al. [23] DDSM YOLOv1 AUC 92.315 %

Bria et al. [8] DDSM YOLOv1 Accuracy 97 %

Ben-ari et al. [6] DDSM R-CNN Recall 79 %

Recall 98.630 %

This paper DDSM YOLOv3(mass) Accuracy 98.086 %

AUC 98.121 %

The top of the table is the comparison of detection performance, and the bottom of the table is the comparison
of classification performance
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highest detection accuracy rate of 99.7 % when the IOU threshold was 0.5, but on classi-
fication task, our model shows a higher recognition effect, reaching the accuracy rate of
98.086 %.

The results of the comparison show that the trained models based on our computer-aided
diagnosis system proposed in this study have relatively high metrics and can accomplish
more tasks, which are generally better than the experimental results of the methods proposed
by other researchers.

5 Conclusion

In this article, we introduce a YOLOv3-based computer-aided diagnosis system for detec-
tion and classification of mammogram lesion. The system can overcome most of the medical
image noise, and achieves two tasks of lesion detection and classification in the same neu-
ral network simultaneously. We train three models under this system: general model, mass
model, microcalcification model. These three models have good performance in detect-
ing and classifying lesions. Besides, the test speed of our system can reach 0.144s on
a low-performance laptop, which makes it possible for the system to be applied in the
hospitals.
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4. Arevalo J, González FA, Ramos-Pollán R, Oliveira JL, Guevara Lopez MA (2016) Representation
learning for mammography mass lesion classification with convolutional neural networks. Comput
Methods Prog Biomed 127:248–257. [Online]. Available: https://linkinghub.elsevier.com/retrieve/pii/
S0169260715300110

5. Arfan M (2017) Deep learning based computer aided diagnosis system for breast mammograms. Int
J Adv Comput Sci App 8(7):286–290. [Online]. Available: http://thesai.org/Publications/ViewPaper?
Volume=8&Issue=7&Code=ijacsa&SerialNo=38

6. Ben-Ari R, Akselrod-Ballin A, Karlinsky L, Hashoul S (2017) Domain specific convolutional neural nets
for detection of architectural distortion in mammograms. In: 2017 IEEE 14th international symposium on
biomedical imaging (ISBI 2017). IEEE, Melbourne, pp 552–556. [Online]. Available: http://ieeexplore.
ieee.org/document/7950581/

7. Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A (2018) Global cancer statistics 2018:
GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA: A
Cancer J Clin 68(6):394–424. [Online]. Available: http://doi.wiley.com/10.3322/caac.21492

8. Bria A, Marrocco C, Galdran A, Campilho A, Marchesi A, Mordang J-J, Karssemeijer N, Molinara M,
Tortorella F (2017) Spatial enhancement by dehazing for detection of microcalcifications with convolu-
tional nets. In: Battiato S, Gallo G, Schettini R, Stanco F (eds) Image analysis and processing - ICIAP

https://ieeexplore.ieee.org/document/8037053/
https://ieeexplore.ieee.org/document/8037053/
https://linkinghub.elsevier.com/retrieve/pii/S0169260717314980
http://link.springer.com/10.1007/s40846-017-0321-6
http://link.springer.com/10.1007/s40846-017-0321-6
https://linkinghub.elsevier.com/retrieve/pii/S0169260715300110
https://linkinghub.elsevier.com/retrieve/pii/S0169260715300110
http://thesai.org/Publications/ViewPaper?Volume=8&Issue=7&Code=ijacsa&SerialNo=38
http://thesai.org/Publications/ViewPaper?Volume=8&Issue=7&Code=ijacsa&SerialNo=38
http://ieeexplore.ieee.org/document/7950581/
http://ieeexplore.ieee.org/document/7950581/
http://doi.wiley.com/10.3322/caac.21492


Multimedia Tools and Applications

2017, vol 10485. Springer International Publishing, Cham, pp 288–298. series Title: Lecture Notes in
Computer Science. [Online]. Available: http://link.springer.com/10.1007/978-3-319-68548-9 27

9. Clark K, Vendt B, Smith K, Freymann J, Kirby J, Koppel P, Moore S, Phillips S, Maffitt D, Pringle M et
al (2013) The cancer imaging archive (TCIA): maintaining and operating a public information repository.
J Digit Imag 26(6):1045–1057. publisher: Springer. [Online]. Available: http://link-springer-com-s.vpn.
whu.edu.cn:8118/article/10.1007/s10278-013-9622-7

10. Deng J, Dong W, Socher R, Li L-J, Li K, Fei-Fei L (2009) ImageNet: a large-scale hierarchical image
database, 248–255. [Online]. Available: https://ieeexplore.ieee.org/document/5206848

11. Gøtzsche PC, Jørgensen KJ (2013) Screening for breast cancer with mammography. Cochrane Database
Syst Rev. [Online]. Available: http://doi.wiley.com/10.1002/14651858.CD001877.pub5

12. Heath M, Bowyer K, Kopans D, Kegelmeyer P, Moore R, Chang K, Munishkumaran S (1998) Current
status of the digital database for screening mammography. In: Viergever MA, Karssemeijer N, Thijssen
M, Hendriks J, van Erning L (eds) Digital mammography, vol 13. Springer Netherlands, Dordrecht,
pp 457–460. series Title: Computational Imaging and Vision. [Online]. Available: http://link.springer.
com/10.1007/978-94-011-5318-8 75

13. Jung H, Kim B, Lee I, Yoo M, Lee J, Ham S, Woo O, Kang J (2018) Detection of masses in mam-
mograms using a one-stage object detector based on a deep convolutional neural network. PLOS ONE
13(9):e0203355. [Online]. Available: https://dx.plos.org/10.1371/journal.pone.0203355

14. Kingma DP, Ba J (2017) Adam: a method for stochastic optimization, arXiv:1412.6980 [cs]
15. Krizhevsky A, Sutskever I, Hinton GE (2017) ImageNet classification with deep convolutional neural

networks. Commun ACM 60(6):84–90. [Online]. Available: https://dl.acm.org/doi/10.1145/3065386
16. Kooi T, Gubern-Merida A, Mordang J-J, Mann R, Pijnappel R, Schuur K, den Heeten A, Karssemeijer

N (2016) A comparison between a deep convolutional neural network and radiologists for classifying
regions of interest in mammography. In: Tingberg A, Lång K, Timberg P (eds) Breast imaging, vol 9699.
Springer International Publishing, Cham, pp 51–56. series Title: Lecture Notes in Computer Science.
[Online]. Available: http://link.springer.com/10.1007/978-3-319-41546-8 7

17. Lee CH, Dershaw DD, Kopans D, Evans P, Monsees B, Monticciolo D, Brenner RJ, Bassett L, Berg W,
Feig S, Hendrick E, Mendelson E, D’Orsi C, Sickles E, Burhenne LW (2010) Breast cancer screening
with imaging: recommendations from the society of breast imaging and the ACR on the use of mam-
mography, breast MRI, breast ultrasound, and other technologies for the detection of clinically occult
breast cancer. J Amer College Radiol 7(1):18–27. [Online]. Available: https://linkinghub.elsevier.com/
retrieve/pii/S1546144009004803

18. Lin T-Y, Goyal P, Girshick R, He K, Dollár P (2018) Focal loss for dense object detection,
arXiv:1708.02002 [cs]

19. Ma J, Liang S, Li X, Li H, Menze BH, Zhang R, Zheng W-S (2019) Cross-view relation networks for
mammogram mass detection, arXiv:1907.00528 [cs]

20. Mordang J-J, Janssen T, Bria A, Kooi T, Gubern-Mérida A, Karssemeijer N (2016) Automatic microcal-
cification detection in multi-vendor mammography using convolutional neural networks. In: Tingberg A,
Lång K, Timberg P (eds) Breast imaging, vol 9699. Springer International Publishing, Cham, pp 35–42.
series Title: Lecture Notes in Computer Science. [Online]. Available: http://link.springer.com/10.1007/
978-3-319-41546-8 5

21. Moreira IC, Amaral I, Domingues I, Cardoso A, Cardoso MJ, Cardoso JS (2012) INbreast. Acad Radiol
19(2):236–248. [Online]. Available: https://linkinghub.elsevier.com/retrieve/pii/S107663321100451X

22. Omonigho EL, David M, Adejo A, Aliyu S (2020) Breast cancer: tumor detection in mammogram
images using modified alexnet deep convolution neural network. In: 2020 international conference in
mathematics, computer engineering and computer science (ICMCECS). IEEE, Ayobo, Ipaja, Lagos,
Nigeria, pp 1–6. [Online]. Available: https://ieeexplore.ieee.org/document/9077659/

23. Platania R, Shams S, Yang S, Zhang J, Lee K, Park S-J (2017) Automated breast cancer diagnosis using
deep learning and region of interest detection (BC-DROID). In: Proceedings of the 8th ACM interna-
tional conference on bioinformatics, computational biology,and health informatics - ACM-BCB ’17.
ACM Press, Boston, pp 536–543. [Online]. Available: http://dl.acm.org/citation.cfm?doid=3107411.
3107484

24. Redmon J, Farhadi A (2018) YOLOv3: an incremental improvement, 1–6. [Online]. Available: https://
pjreddie.com/media/files/papers/YOLOv3.pdf

25. Redmon J, Divvala S, Girshick R, Farhadi A (2016) You only look once: unified, real-time object detec-
tion. In: 2016 IEEE conference on computer vision and pattern recognition (CVPR). IEEE, Las Vegas,
pp 779–788. [Online]. Available: http://ieeexplore.ieee.org/document/7780460/

26. Ren S, He K, Girshick R, Sun J (2016) Faster R-CNN: towards real-time object detection with region
proposal networks, arXiv:1506.01497 [cs]

http://link.springer.com/10.1007/978-3-319-68548-9_27
http://link-springer-com-s.vpn.whu.edu.cn:8118/article/10.1007/s10278-013-9622-7
http://link-springer-com-s.vpn.whu.edu.cn:8118/article/10.1007/s10278-013-9622-7
https://ieeexplore.ieee.org/document/5206848
http://doi.wiley.com/10.1002/14651858.CD001877.pub5
http://link.springer.com/10.1007/978-94-011-5318-8_75
http://link.springer.com/10.1007/978-94-011-5318-8_75
https://dx.plos.org/10.1371/journal.pone.0203355
http://arxiv.org/abs/1412.6980
https://dl.acm.org/doi/10.1145/3065386
http://link.springer.com/10.1007/978-3-319-41546-8_7
https://linkinghub.elsevier.com/retrieve/pii/S1546144009004803
https://linkinghub.elsevier.com/retrieve/pii/S1546144009004803
http://arxiv.org/abs/1708.02002
http://arxiv.org/abs/1907.00528
http://link.springer.com/10.1007/978-3-319-41546-8_5
http://link.springer.com/10.1007/978-3-319-41546-8_5
https://linkinghub.elsevier.com/retrieve/pii/S107663321100451X
https://ieeexplore.ieee.org/document/9077659/
http://dl.acm.org/citation.cfm?doid=3107411.3107484
http://dl.acm.org/citation.cfm?doid=3107411.3107484
https://pjreddie.com/media/files/papers/YOLOv3.pdf
https://pjreddie.com/media/files/papers/YOLOv3.pdf
http://ieeexplore.ieee.org/document/7780460/
http://arxiv.org/abs/1506.01497


Multimedia Tools and Applications

27. Sarath CK, Chakravarty A, Ghosh N, Sarkar T, Sethuraman R, Sheet D (2020) A two-stage multiple
instance learning framework for the detection of breast cancer in mammograms, arXiv:2004.11726 [cs]

28. Sawyer-Lee R, Gimenez F, Hoogi A, Rubin D (2016) Curated breast imaging subset of DDSM, Cancer
Imag Archive. [Online]. Available: https://wiki.cancerimagingarchive.net/x/lZNXAQ

29. Siegel RL, Miller KD, Jemal A (2020) Cancer statistics, 2020. CA: A Cancer J Clin 70(1):7–30. [Online].
Available: https://onlinelibrary.wiley.com/doi/abs/10.3322/caac.21590

30. Sun L, Wang J, Hu Z, Xu Y, Cui Z (2019) Multi-view convolutional neural networks for mammographic
image classification. IEEE Access 7:126273–126282. [Online]. Available: https://ieeexplore.ieee.org/
document/8822935/

31. Sun W, Tseng T-LB, Zhang J, Qian W (2017) Enhancing deep convolutional neural network scheme
for breast cancer diagnosis with unlabeled data. Comput Med Imag Graph 57:4–9. [Online]. Available:
https://linkinghub.elsevier.com/retrieve/pii/S0895611116300696

32. Suzuki S, Zhang X, Homma N, Ichiji K, Sugita N, Kawasumi Y, Ishibashi T, Yoshizawa M (2016) Mass
detection using deep convolutional neural network for mammographic computer-aided diagnosis. In:
2016 55th annual conference of the society of instrument and control engineers of Japan (SICE). IEEE,
Tsukuba, pp 1382–1386. [Online]. Available: http://ieeexplore.ieee.org/document/7749265/

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

http://arxiv.org/abs/2004.11726
https://wiki.cancerimagingarchive.net/x/lZNXAQ
https://onlinelibrary.wiley.com/doi/abs/10.3322/caac.21590
https://ieeexplore.ieee.org/document/8822935/
https://ieeexplore.ieee.org/document/8822935/
https://linkinghub.elsevier.com/retrieve/pii/S0895611116300696
http://ieeexplore.ieee.org/document/7749265/

	A computer-aided diagnostic system for mammograms based on YOLOv3
	Abstract
	Introduction
	Related work
	Computer-aided diagnosis system based on YOLOv3
	Dataset
	Image preprocessing method
	Cluster anchor boxes
	Structure and implementation of YOLOv3 based network
	Network output processing method

	Experiment and analysis
	Experiment setup
	Operating environment and training strategy
	General, mass and microcalcification model

	Evaluation system
	Evaluation logic
	Evaluation methods and metrics of lesion detection
	Evaluation methods and metrics of lesion classification

	The detection performance of our models
	The classification performance of our models
	The test speed of our models
	Comparison of our system with other methods

	Conclusion
	References


